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Abstract: The aim is to present novel aggregating operators named as confidence Picture fuzzy Einstein hybrid
averaging and geometric operators using familiarity degree of decision makers under Picture fuzzy set (PFS)
environment. Some desirable properties are also discussed. A multi criteria group decision making (MCGDM)
method has been shown to solve an air quality evaluation problem. Finally, sensitivity and comparative
analyses have been presented to validate the consistency of the novel aggregation operators. The results are

computed, tabulated and plotted graphically.
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Introduction
Multi criteria decision making (MCDM) is a popular
technique to deal with decision-making issues in
multiple-criteria scenarios. It rates various alternatives
based on a variety of decision criteria before

classifying them in accordance with their
effectiveness.  Real-world  issues like  waste
management, choosing eco-friendly  suppliers,

financial investment risk, ERP system, etc. can be
resolved with the aid of the MCDM technique. These
real-world issues are one-dimensional, two-
dimensional, or three-dimensional in nature
depending on the level of uncertainty in the data due
to its fuzziness or vagueness. Therefore, it is very
challenging to evaluate each MCDM problem
accurately using a particular tool to quantify
uncertainty, an aggregation operator to aggregate data,
and fnorm and #-conorm to produce arithmetic
operational laws. To overcome issues associated with
expressing ambiguous and uncertain opinions, the
fuzzy set (FS) was introduced by Zadeh (1965).
Various decision-making problems were modelled
using the fuzzy sets. The need to find newer fuzzy
sets capable of expressing human evaluation more
accurately led to the introduction of various kinds of
FS. The ordinary FS has one clear membership
function and has limited use in evaluating uncertain
environments.

Atanassov (1986) proposed the intuitionistic fuzzy set to
present extended fuzzy preferences for decision-makers.
The intuitionistic fuzzy set (IFS) has membership, non-
membership, and hesitance degrees. A basic principle of
the IFS is that the sum of the three degrees must equal 1
(Zu and Yagar 2006; Zu 2008). Unfortunately, the
intuitionistic fuzzy set does not include the neutral
degree of any element from the set. Thus, by including
membership, neutral and non-membership degrees,
Coung (2014) proposed PFS. PFSs have been
successfully implemented in various MCDM methods
(Ates and Akay 2020; Wei 2017a). Wei (2017b) studied
the series of averaging and geometric aggregation
operators by involving algebraic operational laws, while
Garg (2017a) used Archimedean operations and
proposed novel aggregation operators under PFS
environment. After that, Khan et al. (2019) introduced
aggregation operators based on Einstein operations
under PFS environment. Jana et al. (2018) introduced
novel Dombi operational laws, while Wei (2018) and
Seikh and Mandal (2021) introduced novel Hamacher
and frank operational laws under PFS environment,
respectively. Now many researchers introduced novel
aggregating operators, operational laws and MCDM
problems under PFS environment (Ganie and
Singh2021; Gocer 2021; Karsmti et al. 2022; Lin et al.
2021; Luo and Xing 2020; Si et al. 2021; Shahzaid et al.
2018).
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Motivation of the study

From literature survey it has been observed
that the decision makers give their decision
based on the performance of alternatives after
their aggregation process through a suitable
aggregating operator on different criteria,
which is called the familiarity degree or
confidence levels of the decision makers. The
above discussed aggregation operators do not
consider familiarity degree of decision makers
under a PFS environment. However, Yu
(2014) introduced the novel aggregating
operators by making use of confidence level
under intuitionistic fuzzy set environment.
After that, Garg (2017b) proposed confidence
aggregation operators under pythagorean fuzzy
set environment, while Joshi and Gegov
(2019) studied the series of aggregation
operators with familiarity degree under q-rung
orthopair fuzzy set.

Contribution of the study

From above motivation and literature survey,
it has been observed that the best of
knowledge no investigation has been carried
out for development of any aggregation
operator considering familiarity degree of
decision makers with Einstein operations
under PFS environment. Thus, by integrating
the concept of confidence levels of decision
makers and Einstein operations under PFS
environment, the paper mainly proposes novel
CPFEHA and CPFEHG operators, which is
the main contribution of this study. The
proposed study is more general, flexible and
stable to solve any MCGDM problems due to
the involvement of familiarity degree of
decision makers under consideration.

This study is prepared as follows. Definitions
of PFS, Einstein operational laws, score and
accuracy functions are presented in Section 2.
Section 3, develops CPFEHA and CPFEHG
operators with some of their desirable
properties. Based on proposed operators, a
novel MCGDM approach has been designed in
Section 4. After that, to exemplify the
proposed MCGDM approach, a numerical
assessment has been presented in Section 5.
Section also provides sensitivity and
comparative analyses. Finally, conclusion and
future scope are provided in Section 6.
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Basic Concepts

This section briefly provides basic definitions
about PFS, score and accuracy functions and
Einstein operations for Picture fuzzy numbers
(PFNs).

PFS

Definition 1. (Cuong 2014) Let X is a
universal set then PFS on X is defined as:

¢ =6 (1 ()17, (%), v, (x)) : x € X}

Where, . (x), 17,(x), v,.(x)€[0,1]
called the degrees of “positive membership”,
“neutral  membership” and  “negative
membership” of Xx in¢, respectively, and

u(x), m.(x) and v (x)satisfies: 0 <

(D)

are

o (x)+ 1. (x)+ v (x)< 1, Vx€ X. Then,
Ty (x)=(1 - (,U; (x) + ; (x) TV, (x)) called
the indeterminacy degree of x in{. Let

B =(y.n,,v,) is a Picture fuzzy number
(PFN).

Score and Accuracy functions for PFN

Definition 2. (Wei 2017b) Let
B =(uy,1m,,v;) be a PEN then the score

(S(pP)) and accuracy (H(f)) functions of
[ are given as:

S(ﬁ):ﬂﬂ T~ Vg H(,B)zluﬁ T 1V

Let S and [, be two PFNs then using score

and accuracy functions, the ranking of these
numbers can be done using following
criterion.

(a) When S(5) = S(5,) = f, > P,

(b) When S(f,)) =S(5,) then

(1) When H(5) > H(B,)= f > B,
(2) When H(B)<H(B,)= <5,
(3) When H(f) = H(S,)= = 5, -



Einstein operations for PFNs

Definition 3. (Khan et al. 2019a) Let

15,1,

b= (/Uﬁl 1 5V, ) and S, = (:uﬂz >, >Vp, )
be two PFNs, and let 4 > 0. Then,

VY5,

My + 1
(i) f)z@ﬂz:( ﬂ‘ﬂz

1+ g1, 11, ’1+(1—77ﬂ])(1—77/,2)’1+(1—vﬂl)(1—vﬁ2)}

i HpH Mg 15 Vg +V
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I+ (1=, YA =y ) 14151, 1+v,v,
Gi)y p= 214 (1+7,)" =(+1,)" (+v,) =(1+v,)" )
Col@my) () Ay ) () v ) Ay, )t )
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1
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Aggregation operators with confidence
levels under PFS environment

In this section, we proposed hybrid averaging
and hybrid geometric aggregation operators
using Einstein operations under confidence
levels in the PFS environment.

2v;
b
(1‘*’#@)/1 +(1+ﬂﬁ])l ’(2_77@)& +(77/31)l ’(2_‘/@)/1 +(Vﬂl)lj

CPFEHA operator

Definition 4. Let S, =(u, .1, .V, ), where
J =12,..,nbe n’ PFNsand v, €[0,1]

CPFEHA((WI,,B1 Y (ws. Bo) sy, B, >) =D}, Q; (Wa(j>ﬁa<j>)

=Q (l//a(l)ﬁ.'au)) DQ, (Wa(z)lga(Z)) D.. DA, (Wa(;z)lga(lz))

where ,Ba< INRE jth largest of the weighted
Picture fuzzy

BB, =nwpB.j =12 .,n).
Let Q=(Q,,9Q,,..,Q,)" and

o=(w,,,.,0)" are the associated and

values

PFEHA(ﬁI,ﬁZ,...,ﬂn) = @?:1Q,ﬂ'am = Qlﬂea) ® Qzﬁa(z) @--'@leﬁa<;1)

be its confidence levels then the aggregated
value by CPFEHA operator is also PFNs and

Theorem 1. Let ,Bj:(,uﬂ/,nﬂ/,vﬂ/_),where
J =1 2., nbe n’ PFNsand y, €[0,1]

13

be the confidence level of PFNs. Then
CPFEHA operator can be defined as:
2

weighted vectors, such that Q , @, € [0, 1]

and their sum is always 1.

Remark 1: If y, €[0,1] then the CPFEHA

operator is converted into the Picture fuzzy
Einstein hybrid averaging (PFEHA) operator.

(©)
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Proof: By mathematical induction:

When n =2, then

n
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If Equation (4) holds for n = £,
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Thus, Equation (4) holds for n = k£ + 1. Then, Equation (4) holds for all #.
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Hence proof is complete. :<V/’ (,u, m, V)> Vj then

Property 1. (Idempotency) If ,B = ﬂ

CPFEHA((y,, B) (3B, (2 ,)) =08 ©)

Proof: ﬂ‘j = ﬁ = <(//’ (lu’ n, V)> V] and ZQ] = 1, then
=

CPFEHA((%,[)’.>,(w2,ﬂ2>,m,<%,ﬂ )
H(”“ﬂ( H<1 # ) AT,
=
1;!:(14'#[5‘6(/))[/16(1)9,/ +H(1—,U,;M Yo lj(z_ nﬁm)w»@f +ﬂ(%m)w;(_,.)g,
_ L. g
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3
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3o, %o, S 3o,

() 7 —(pg) 7 2, 2v,”
V2.0 V2.9, V2.0 v e DI TR DY Y
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ﬂ;, ﬂé,..., ﬂn is any permutation of
ﬂl’ﬁz"“>ﬂn9 ﬂ}:(#}_/,ﬂkf,V;,)

Property 2. (?0mmutat1v1ty) I:et’ (j _ Lo n),then

By =y 1y v, )(J = 1, 2, m)be n

PFNs and y; be its confidence levels. If

Hence proof is complete.

CPFEHA((y1, .Y (W2 B.) (W, B,))=CPFEHA((,, B, ), (02, B, ) oo (¥, B, ) (6)
o ' of B,p,,..., 5,,based on Theorem 1, it is not
Proof: Given £, f3,,..., B, is any permutation difficult to obtain following expression:

CPFEHA((y,. B,) (W2, B ) (¥, B,))

n Va2 n Vo n WS(/')Q/
H(Hﬂﬁw) 2 ,_lj}(l—ﬂﬁw) o Zgnﬂw

n Vo - Vo T Vo(j)@; - Vo€ ,
1;[(1+ﬂﬁe<j>) +1i__!(1_ﬂﬁo‘m) 1;1[(2_77@;(,)) +1]:[(77ﬁ’5</>)

((1) J
21_[ ﬁ W)
n n o
—_v. Vo ) Vo
];1[(2 Vﬂem) +H(Vﬂ6u‘))

Yo

[T0em, " -TTa-s, o[ Tn,

() o) Jj=1 o(f)

> n i

H(lﬂtﬁ W"”Q/+H(1 Hy ) H<2 n )0 /+H(77/J’m ye
21111/“’6'(/)“/

g P 1)

(2- Vi Yoo f+ (v )ou
I1

Jj=1 ') C«/)

CPFEHA(<1//1, ﬂl'>,<,/,2’ 13»"“’ <,/,n’ B >) Hence proof is complete.

Property 3. (Boundedness) Let
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p = (minj{t//j,,uj}, maxj{l//j,nj}, maxj{t//j,vj}) f = (maxj{t//j,,uj}, minj{t//j,nj}, minj{t//j,vj})

and then
< CPFEHA((y,. 8,) .2 o) (v, B)) < B ()
two different collections of PFNs such that
Proof: The proof is easy so it is omitted here. B. < forall jthen
J J

Property 4. (Monotonicity) If ,Bj. and ﬂj be

CPFEHA((W12 B30 B )W, B,)) < CPFEHA((y1, ) (3, B )10 B,)) )
Proof: The proof is easy so it is omitted here. B, =( Hy 5115, ’Vﬁ_,) ( j=12.., n) be a
3.2. CPFEHG operator collection of PFNs and y, €[0,1] be the

. confidence levels of PFNs. Then CPFEHG
Definition 5. Let operator can be defined as:

502 5" o)

CPFEHG (w1, ) (W25 Bo) oo (W B,)) = (B @B, )= @@ ") (9)

&(m)

Where ﬂ'a( isthe j" largest of the weighted € [0, 1], ij =land n is the balancing

=1
P}ctuFe fuzzy values coefficient, which plays a role of balance.
ﬂj(ﬂj:(ﬂj) j’j = 15 29 cee n): l l l 1
R k 2: If /[=[,=...=] =1 then th
Q=(Q,,Q,,.,Q )" is the weighted vector emar 2 " er.l ©
CPFEHG operator is converted into the Picture
of the CPFEHG operator, such that Q; € [0, fuzzy Einstein hybrid geometric (PFEHG)
n . operator.
1] andZQj =1. Let o =(v,,®,,..,0,) be
=1
the weight vector of these PFNs such that o,
.2 ! . . %
PFEHG(B,, B,,....8,) = ®_’;:1,BM = ﬂam ®ﬁm) ®...®ﬂm) 10)

B =y, 15 v )J = 1, 20 m) be “n°

According to the operational laws for PFNs, PFNs and y; €[0,1] be its confidence levels

the following theorem can be obtained: then the aggregated value by CPFEHG

operator is also PFNs and
Theorem 2. Let
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CPFEHG ((/,, ), (02 B, ) (0, 8,))

n 729N ¢
o

2 .
M
j=l

J=1

n v 0 n v 0
Y _ _ o
[Ta+n; ) H(l M;.,)
-

n v.oQ n v 0
o _ _ aN~
[T, =TT,
J= J=
n

n
Van _ Van
[0, " [T v,)

J=1

Proof: Same as above Theorem.

MCGDM approach with confidence
levels

Consider MCGDM  problem with a
combination of n different alternatives B =
{B1,B,,...,By} and m criteria D =
{D1,Dy,...,D,,;} whose weight vector is

Q :(Q],Qz,..,Qn)T satisfying  Q; €[0,1]

n
andZQj =1. Let there are r set of experts
J=1

denoted by A = {41,4,,...,A,} with weight

% il’ (uiniviD)) (v iz' (U312, 112, Vi2))
_ (‘//:1:(#51'7751:1/51)) (W;z'(ﬂgz;ngz:vzsz»

S
Cnxm

(‘//Zl' (U1, 15 Vi) (l//:lz; (Un2s M2y Vi)

Where fj, 0=y fj < 1) denotes the

confidence level of the experts.

n n > n n
Van i Vo Vo Vo
—u, + A I+n. + 1-n,
B COVRNAREY ) (AR | (SRR § (ET

b

)

vector T = (Tq,T,...,T,)] satisfying 7, > 0,
s=12,...,r and Yi_;7y =1 which are
evaluating each B; with D; in the form of
PFNs. The steps to implement the proposed
MCGDM method for evaluating the best
alternative are as follows.

Step 1 For each decision maker 4,., collect the
information about each B; under the D; and
represent it in the form of PFNs (% =

(v fj, (ufj,nisj,visj))nxm fori=12,..,n j=

1,2,..,mand s =1,2,...,r as

(v im' (ﬂim' Ufm; Vlsm)) w

(v ; s (WS M3 Vam))
m .
W (W s Vi) /
nm

Step 2 The following transformation is used to
normalize distinct types of criteria.

(v ., (Wij,nij,vij)), for benifit criteria D;,
ij

Q= [Qij = {(l// y (vij»Mij» i), for cost criteria D;

Step 3 Aggregate all r decision matrices
C%,s=1,2,..,r as provided by r experts into
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a collective decision matrix by employing
proposed CPFEHA operator



p, =CPFEHA(q}.q; ,....q})

)V/a(l/JT’ _H(l_'u/jom)

r=1

S

];:1[ (1 + ﬂﬁ@m

w5 i) Tr

S Vo) Tr
H nﬂwm

r=1

N

r=1

il Vot
V.
H ( ﬁa(u) )

2 r=1

ol 5 Vo) il
-V, + V.
( Bacin ) 1:!( Boiipy )

Yo

r=1

Vo) Tr s Yot
H(1+'uﬁ8w)) +H(1_ﬂﬁ5“ﬂ)
P

5

3

s Vo Tr S Yo7
2- + | |
n/‘éu/) ] nﬂf(//)

r=1

Step 4 Aggregate PFNs /B,y by using PFEHA operator

B, = PFEHA(B,, By Byy)

Step 5 Evaluate the score values S(f) for
each B;(i = 1,2,...,n).

Step 6 Finally, rank the all alternatives and
best alternative is then select.

Ilustrative example

To demonstrate the proposed method, the air
quality evaluation (adapted from Shahzaib et
al. (2018)) was solved using newly developed
novel aggregating operators. Three stations
(C1,C?C3) that use a weighting vector
of T = (0.314,0.355,0.331)7 to evaluate air
quality can be considered decision makers.
The weighted vector of three measured

indexes is Q =(0.40,0.20,0.40)", and they

are denoted as:

1. SO,(D,),
2. NO,(D,) and
3. PM,,(Dy).

The values obtained from stations describe in
Tables 1, 2 and 3.

5.1. Procedural steps for group decision
making

Step 1 The assessment matrix Q°
S S .S .S —

(!//ij, (“u'nu'vu))' where s=1, 2, 3, whose

weight vector is 7 = (0.314,0.355,0.331)7

has been collected and presented in Tables 1, 2
and 3.

Step 2 The criteria are all of the benefit type,
so no need to change it.

Table 1: Assessment values of expert C*

Alternative D, D, D,
B, (0.90, (0.265,0.150, 0.385)) (0.90, (0.330,0.190, 0.280)) (0.90, (0.245,0.175,0.380))
B, (0.90, (0.345,0.145,0.310)) (0.90, (0.430,0.190,0.180)) (0.90, (0.245,0.275,0.310))
Bs (0.90, (0.365,0.150, 0.335)) (0.90, (0.480,0.310,0.105)) (0.90, (0.340,0.310,0.190))
B, (0.90, (0.430,0.210,0.170)) {0.90, (0.460,0.145,0.165)) {0.90, (0.310,0.430,0.070))
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Table 2: Assessment values of expert C2

Alternative

Dy

D,

Dy

B,
B,
Bs

B,

(0.80, (0.125,0.470,0.200))
(0.80, (0.355,0.335,0.120))
(0.80, (0.315,0.380,0.100))
(0.80, (0.365,0.375,0.135))

(0.80, (0.220,0.400,0.160))
(0.80,(0.300,0.170,0.330))
(0.80, (0.340,0.265,0.195))
(0.80, (0.355,0.220,0.305))

(0.80, (0.345,0.410,0.125))
(0.80,(0.205,0.430,0.105))
(0.80,(0.280,0.520,0.190))
(0.80, (0.325,0.405,0.090))

Table 3: Assessment values of expert C3

Alternative

Dy

D,

D

B,
B,
B
B,

(0.70, (0.260,0.075,0.395))
(0.70,(0.270,0.160,0.360))
(0.70,(0.245,0.365,0.290))
(0.70, (0.390,0.340,0.160))

(0.70,(0.220,0.414,0.160))
(0.70, (0.320,0.015,0.465))
(0.70, (0.250,0.570,0.110))
(0.70, (0.305,0.435,0.120))

(0.70,(0.255,0.370,0.275))
(0.70,(0.135,0.575,0.090))
(0.70,(0.175,0.330,0.165))
(0.70,(0.465,0.425,0.076))

Step 3 In order to combine decision matrices
Cs, s =1,2,3 to form a collective decision

matrix use CPFEHA operator, where 7 =
(0.314,0.355,0.331)7 (see Table 4).

Table 4: Comprehensive decision matrix C using CPFEHA operator

Alternative Dy D, Ds
B, (0.1723,0.2844,0.4104) (0.2091,0.4144,0.2905) (0.2291,0.3985,0.3348)
B, (0.2648,0.2982,0.3326) (0.2865,0.1598,0.3985) (0.1598,0.5006,0.2366)
B3 (0.2531,0.3741,0.3088) (0.2982,0.4538,0.2166) (0.2191,0.4802,0.2752)
B, (0.3222,0.3990,0.2420) (0.3085,0.3330,0.2824) (0.2941,0.5151,0.1444)
Step 4 Use PFEHA operator to aggregate all Sensitivity Analysis

preference values, where

Q=(0.40,0.20,0.40)" (see Table 5).

Table 5: The overall preference value computed from

CPFEHA operator
Alternative CPFEHA
B, (0.2098,0.3792,0.3300)
B, (0.2530,0.2617,0.3351)
B3 (0.2646,0.4255,0.2623)
B, (0.3055,0.4132,0.2105)

Step 5 Since S(B;)—0.1201, S(By) =
—0.0821, S(Bs) = 0.0022, and S(B,) =
0.0950.

Step 6 We get S(B4) >S(B3) >S(Bz)
> S(B,) . Thus, B, is best.
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The effect of different combinations of

levels w = (., ,¥,); i =
1,2,3,4; j = 1,2,3 on final decision making is
used to solve the current MCGDM problem is
examined in this section. The computed results
are tabulated in Table 6 and plotted in Fig. 1
using all of the considered combinations.
Alternatives have different score values for
different combinations of ¥, as shown in

confidence

Table 6 and Fig. 1, but their ranking order is
the same. For the CPFEHA operator, the best
and worst alternatives are B, andBj,
respectively, from all the selected
combinations. As a result, we can conclude
that the CPFEHA operator is reliable and
consistent across confidence levels.



Table 6: Ranking results obtained by utilizing different combinations of confidence level / in CPFEHA operator

This section includes a comparative analysis to
show the stability and consistency of the novel
operators. The PFWA, PFOWA, PFHA,
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Confidence Score values Ranking Best
Level Results alternative
¥ = W95 ¥i)
W =(07,0809) S(B,) = —0.1019,S(B,) = —0.0589,S(B;) = 0.0128, S(B,) = 0.0939 By>B;>B, > B, B,
W =(09,0807)  S(B;) = —0.1153,5(B,) = —0.0583,S(B;) = 0.0156,S(B,) = 0.1080 B,>By>B,>B, B,
W =(0709,08)  S(B,) = —0.1242,5(B,) = —0.0826,5(B;) = —0.0074,5(B,) = 0.0793 B, > By > B, > B, B,
¥ =(02,04,0.6) S(B;) =—-0.4789,5(B;) = —0.4725,5(B;) = —0.4175,5(B,) = —0.3724 B, > B3 > B, > B, B,
¥ =(06,0402) S(B,) =-0.5239,5(B,) = —0.4578,5(B;) = —0.4094,S(B,) = —0.3336 B, >B3;>B, > B, B,
W =(020604) S(By) = —0.5433,5(B,) = —0.5372,5(B;) = —0.4783,5(B,) = —0.4182 B, >B; > B, > B, B,
W=(03,0507)  S(B;) = —0.3706,5(B,) = —0.3562,5(B;) = —0.2936,5(B,) = —0.2370 B, >B; > B, > B, B,
¥ =(070503) S(B,) =-04114,5(B,) = —0.3419,5(B;) = —0.2852,5(B,) = —0.2008 B, >B; > B, > B, B,
¥ =(050703)  S(B,) =-04519,5(B,) = —0.4088,5(B;) = —0.3434,5(B,) = —0.2601 B, >B; > B, > B, B,
Fig. 1 Sensitivity results for CP’FEHA operator
Different combination of confidence levels
PFWG, PFOWG, PFHG, PFEWA, and
Comparative Analysis PFEOWA operators are used to compare the

results (Wei 2017b; Khan et al. 2019). Table 7
summarizes the computed results, which are
also plotted in Fig. 2.



Table 7: The aggregating results by different operators

Operator Score values Ranking Best
Results alternative

Existing PFWA S(By) = 0.0036,5(B,) = 0.0807, S(B3) = 0.1237,5(B,) = 0.2591 B,>B3;>B; > B B,
operators

PFOWA S(By) = —0.1271,5(B,) = —0.1056,5(B;) = —0.0101,5(B,) = 0.1256 By >B3>B,>B B,

PFHA S(B;) = 0.0300,5(B,) = 0.0712,5(B3) = 0.1508,5(B,) = 0.2504 By, >B3>B,>B, B,

PFWG S(B;) = —0.0376,5(B,) = 0.0182,5(B3) = 0.0909,5(B,) = 0.2387 By>B3>B,>B B,

PFOWG S(B;) = —0.0323,5(B;) = 0.0206,5(B;) = 0.1240,5(B,) = 0.2288 By >B3>B,>B B,

PFHG S(B;) = —0.0338,5(B;) = 0.0070,5(B3) = 0.1170,5(B,) = 0.2204 By, >B3>B,>B B,

PFEWA S(B;) = 0.0138,5(B,) = 0.0703,S(B3) = 0.1414,5(B,) = 0.2460 B,>B3;>B; > B B,

PFEOWA  S(B;) = —-0.0261,5(B,) = 0.0543,5(B3) = 0.1114,5(B,) = 0.2678 By >B3>B,>B B,
Proposed ~ CPFEHA §(B;) =—0.1201,5(B;) = —0.0821,5(B;) = 0.0022,5(B,) = 0.0950 By, >B3>B,>B, B,
operators

CPFEHG S(B;) = 0.1241,5(B,) = 0.1714,S(B3) = 0.2646,5(B,) = 0.3535 By>B3>B,>B B,

Fig.2 Radar graph for comparison in which scale of grid representing score values

Bl
CPFEHG

a=t==B2

=i=B3

PFHA
—=—B4

CPFEHA

PFEOWA PFWG

PFHG

2. For all developed and existing
aggregating operators, the ranking

order remains same.
The following observations have been made 3. The CPFEHA and CPFEHG operators
based on the comparative analysis. are converted into existing PFEHA
and PFEHG  operators  when

1. Table 7 and Fig. 2 clearly show that confidence level y = 1.

all developed and existing aggregating
operators came to the same
conclusion, namely that B, and B; are
the best and worst, respectively.

In comparison to some existing aggregating
operators, the proposed aggregating operators
are more general, flexible, stable, and
consistent, and provide more realistic results to
handle MCGDM problems in a PFS
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environment.

Conclusion

The paper proposed a novel MCGDM problem in a
PFS Environment by incorporating an expert's
familiarity degree through a confidence level and
using Einstein operations. CPFEHA and CPFEHG are
two new aggregating operators developed in this paper.
The proposed aggregation operators take into account
not only the decision makers' evaluation information
in terms of PFN, but also their levels of familiarity
with the problem in terms of confidence level. Also
discussed are some desirable properties and special
cases for proposed aggregating operators. Then, using
novel aggregating operators, a MCGDM problem of air
quality evaluation was investigated. Finally, sensitivity
and comparative analyses were performed to assess the
validity and effectiveness of the proposed aggregation
operators. The following are the most notable points:
1. All novel and existing aggregating operators
that
and are best and worst for the

reach the same conclusion, namely
alternatives

problem under consideration, respectively.

2. Novel aggregating operators preserve the nature
(increasing or decreasing) of relative score
values.

3. The proposed novel aggregating operators are
more general, flexible, stable, and consistent,
resulting in more realistic and reliable results.

This study can be extended for different operational
laws, aggregation operators, fuzzy environment, etc.

References
[11 A. H. Ganie, S. Singh, Neural Computing and

Applications, 33 (2021) 9199-9219.

[21 A. Si, S. Das, S. Kar, Soft Computing, (2021).
https://doi.org/10.1007/s00500-021-05909-9

[3] A. Shahzaid, T. Mahmood, S. Abdullah, Q. Khan,
Bulletin of the Brazilian Mathematical Society,
(2018). https://doi.org/10.1007/800574-018-0103-y

[4] B. C. Cuong, Journal of Computer Science and

Cybernetics, 30 (2014) 409- 420.

(5]

e]

(7]

(8]

(o]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(8]

9]

[20]

[21]

[22]

[23]

24

B. P. Joshi, A. Gegov, International Journal of
Intelligent Systems, (2019).

https://doi.org/10.1002/int.22203

C. Jana, T. Senapati, M. Pal, R. R. Yager, Applied
Soft Computing, (2018).
https://doi.org/10.1016/j.a50¢.2018.10.021

D. Yu, Applied Soft Computing, 19 (2014) 147-160.

F. Ates, D. Akay, International Journal of
Intelligent Systems, (2020).
https://doi.org/10.1002/int.22220

F. Gocer, IEEE Access, (2021).

https://doi.org/10.1109/ACCESS.2021.3105734
G. Wei, Fandamenta Informaticae, 157 (2018) 271-320.
G. Wei, Informatica, 28 (2017b) 547- 564.

G. Wei, Journal of Intelligent and Fuzzy Systems,
33 (2017a) 713- 724.

H. Garg, Arabian Journal for Science and
Engineering, 42 (2017a) 5275- 5290.

H. Garg, Computational and Mathematical
Organization Theory, (2017b).
https://doi.org/10.1007/s10588—017—9242—8

H. Karsmti, M. S. Sindhu, M. Ahsan, I. Siddique, I.
Mekawy, H. A. E. W. Khalifa, Journal of Function
Spaces, 15 (2022). https://dOi.OI‘g/10.1155/2022/2537513

K. T. Atanassov, Fuzzy Sets Systems, 20 (1986) 89-
96.

L. A. Zadeh, Information Control, 8 (1965) 338-353.
M. Lin, X. Li, R. Chen, H. Fujita, J. Lin, Artificial
Intelligence Review, (2021).
https://doi.org/10.1007/510462-021-09953-7

M. R. Seikh, U. Mandal, Informatica, 45 (2021) 447-
461.

S. Khan, S. Abdullah, S. Ashraf, Mathematical
Sciences, 13 (2019) 213-229.

S. Luo, L. Xing, Mathematics,
https://doi.org/10.3390/math8010003

(2020).

Z. S. Xu, R. R. Yager, International Journal of
General Systems, 35 (2006), 417-433.

Z. Xu, IEEE Trans. Fuzzy Systems, 14 (2008) 1176-
1189.



